TACERA Annual Conference

Seal Coat Material Selection and Rate Design

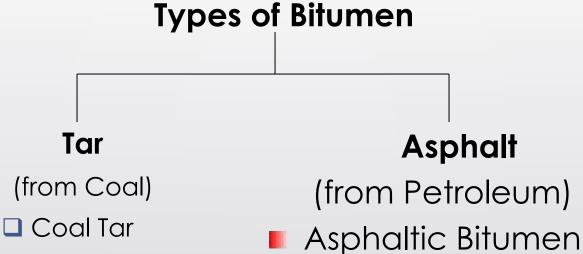
Darlene Goehl, P.E. Research Engineer

Cindy Estakhri, P.E. Research Engineer

2

Outline

- •Binder
- Aggregate
- Rate Design



3

Material Selection - Binder

What is Asphalt?

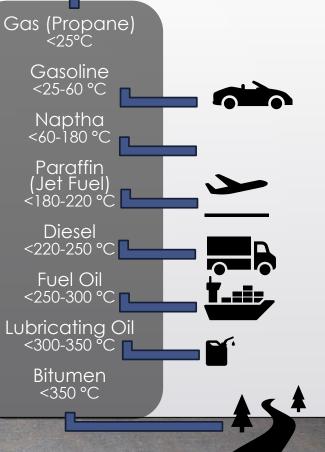
Paving Grade Asphalt

Road Tar

Asphalt

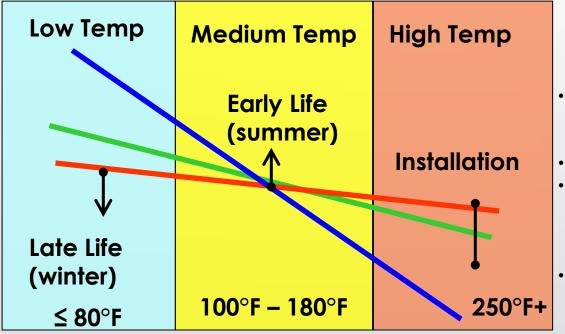
- Asphalt binder is a by-product from refinery processing of crude oil
 - Sometimes called the "bottom of the barrel"
- Properties depend on:
 - Refinery operations (distillation, PDA, ROSE, coker, cracker)
 - Composition crude-source dependent

Crude Sources



Oil/Gas Wells Image from: Scarpelli, T., et al. (2020). "A global gridded (0.1° × 0.1°) inventory of methane emissions from oil, gas, and coal exploitation based on national reports to the United Nations Framework Convention on Climate Change." Earth System Science Data 12: 563-575.

Basics of Refining Crude Oil



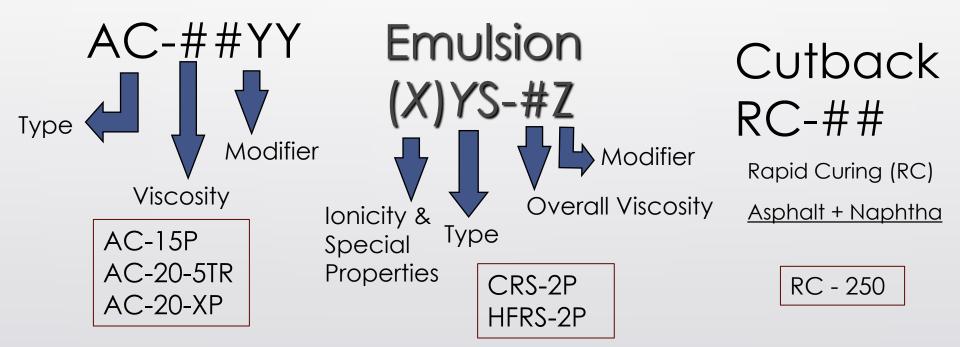
Purchasing of Asphalt Binders

- The key to binder specs:
 - Temperature Susceptibility
 - Or "How do the properties change with temperature?"
 - Main property is stiffness, of some type.

How Specifications Work

- When applied, the binder should be fluid enough to spray and cover the surface uniformly, yet viscous enough to remain in a uniform layer and not puddle in depressions or run off the pavement;
- After application, it should retain the required consistency to wet the applied aggregate;
- It should develop adhesion quickly;
- After rolling and curing, it should hold the aggregate tightly to the roadway surface to prevent dislodging by traffic; and
- When applied in the proper amount, it should not bleed or strip with changing weather conditions.

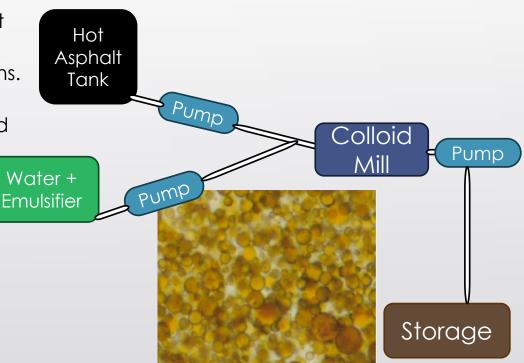
Temperature


Stiffness

Types of Asphalt Binders

- Asphalt Cement
 - Hot applied asphalt binder
 - Generally graded by viscosity
 - Typically modified with polymer or tire rubber to improve qualities.
- Cutback Asphalt
 - Applied at lower temperatures
- Emulsified Asphalt
 - Applied at lower temperatures
 - Typically modified with polymer or tire rubber to improve qualities.

Typical Asphalt Cement Nomenclature


Basic Emulsion Classifications

- **RS emulsions** are the least stable.
- They break rapidly when in contact with aggregates.
- They are used for spray applications.
- Polymers may be added to these emulsions to increase adhesion and shorten return-to-traffic times.
- Anionic
 - Negatively Charged Asphalt
 Particles.
- Cationic

exas A&M

ាទពារាទេ

Positively Charged Asphalt
 Particles.

Benefits/Utility of Emulsions

- Can use at lower temperatures than AC
- No petroleum solvents
 - no danger of fire / explosion
 - little or no hydrocarbon emissions (good for non-attainment areas)
- Can readily coat damp aggregate surfaces
- Can customize emulsion chemistry to maximize adhesion to different aggregate mineralogy
- Aggregates for use with emulsions should not be precoated because the precoating inhibits the chemical break, absorption, and adhesion of the emulsion to the rock.
- In general, cationic emulsions will break and set more quickly than anionic emulsions. Setting rate of cationic is affected less by weather.

Texas A&M Transportation Institute

Material Selection - Aggregate

Desirable Aggregate Properties for Seal Coats

- Properties
 - Resistance to wheel load abrasion
 - Resistant to environment
 - Provide a skid resistant surface
 - Provide different texture or color
 - Cubical shape
 - Single size aggregate
- Specify:
 - Aggregate type
 - Aggregate gradation
 - Precoating requirements

Aggregate Factors Affecting Performance

- Size
 - Larger rock more binder
 - Larger rock more noise more vehicle damage.
- Shape
 - As near Cubical as possible
 - Flakiness test
- Toughness
 - LA Abrasion and Mag Sulfate Soundness
- Cleanliness
 - Limit dust and dirt to improve adhesion
 - Deleterious Materials and Decantation Test
- Aggregate Absorption (lightweight only)
- Pre-coated
 - AC binder pre-coating recommended
 - Emulsion Pre-coating not recommended

Texas A&M Transportation Institute

Aggregate Factors Affecting Performance, cont.

- Other
 - Vehicle damage can be reduced by using smaller aggregate or using lightweight aggregates.
 - Larger aggregate seal coats provide a better sealing capabilities
 - Larger aggregates generate complaints of noise from motorists/residents.
 - Double application seal coats using a smaller aggregate for the top layer produce less tire noise.

Aggregate

- Types
 - Natural Aggregates
 - Crushed Gravel
 - Crushed Stone
 - Natural Limestone Rock Asphalt
 - Synthetic Aggregates
 - Lightweight Aggregates
 - Crushed Slag

- Terminology
 - Coarse Aggregate
 - Fine Aggregate
 - Nominal Max. Size
 - One size larger than the first sieve to retain more than 10%
 - Maximum Size
 - One size larger than
 nominal maximum size

Seal Coat Rates

The Texas Seal Coat Design Method was developed through TxDOT research project 0-6989, "Update Seal Coat Application Rate Design Method". The research reports can be found at the following websites:

https://static.tti.tamu.edu/tti.tamu.edu/documents/0-6989-R1.pdf

Example

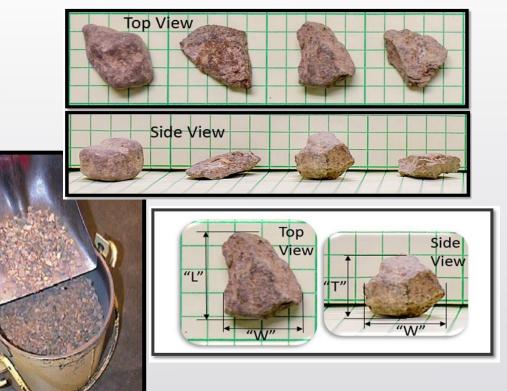
If you use AC 20-5TR and Precoated Grade 4 rock,

- 1. Will the rock rate change?
- 2. Will the asphalt rate change?

- <u>Conditions:</u>
 - Dry hot mix with cracks
 - 3200 ADT

Texas A&M Transportation Institute

• 28 % Trucks



- <u>Conditions:</u>
 - Seal Coat with wheelpath flushing
 - 810 ADT
 - 32 % Trucks

Rock Rate – Determined by Size and Shape of Rock


• What can I measure?

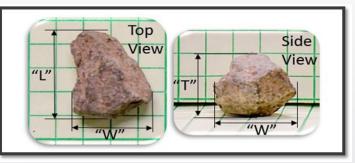
- Loose Unit Weight
 - Approximately the condition in the haul truck
 - Rock + air(void space) in bucket
- Size of the Rock
 - Determine the average height
- Shape of the Rock
 - Flakiness Index

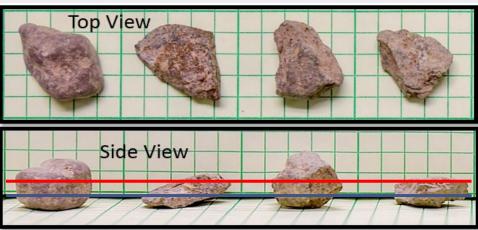
Rock Rate

• Which one is correct and how do I determine the rate?

Where:

S = Theoretical Spread Rate, sq. yd. per cu. yd.


 T_m = Average Mat Thickness, in.

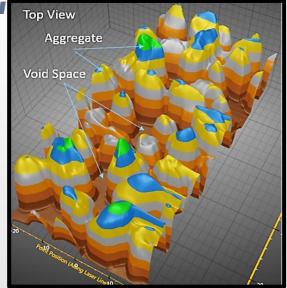

Description	Symbol	Example	Units	Comments/Formula
Average Mat Thickness	T _m	0.285	in	Measured
Theoretical Spread Rate	S	126	sy/cy	$= 36 \div 0.285$

Asphalt Rate – Controlled by Size and Shape of Rock

- Binder depth should be minimum of 30% of aggregate thickness to avoid aggregate loss
- Binder depth should be maximum of ~65% of aggregate thickness to avoid flushing

Embedment

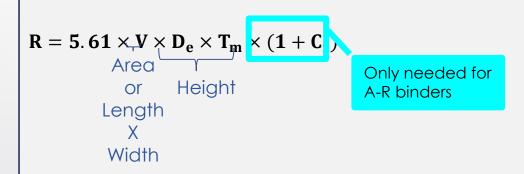
Table 1: Design Embedment


FI			<u><</u> 8	3%					>8	3%		
Aggr. Grade	G	r 3	G	r 4	G	r 5	Gi	- 3	Gi	⁻ 4	G	r 5
Binder	В	A-R	В	A-R	В	A-R	В	A-R	В	A-R	В	A-R
Traffic (v/d/l)	De	De	De	De	De	De	De	De	De	De	De	De
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
0–50 SHLD	41	52.5	40.5	51.5	40.5	51.5	37	47	36.5	46.5	36	46
51–100	40	52	39.5	51	39.5	51	36	46.5	35.5	46	35	45.5
101–250	39.5	51.5	39	50.5	39	50.5	35.5	46	35	45.5	34.5	45
251–400	39	50.5	38.5	49.5	38.5	49.5	35	45	34.5	44.5	34	44
401–600	38	49.5	37.5	48.5	37.5	48.5	34	44	33.5	43.5	33	43
601–800	37.5	49	37	48	37	48	33.5	43.5	33	43	32.5	42.5
801–1000	37	48	36.5	47	36.5	47	33	42.5	32.5	42	32	41.5
1001–1500	36.5	47.5	36	46.5	36	46.5	32.5	42	32	41.5	31.5	41
1501–2000	36	47	35.5	46	35.5	46	32	41.5	31.5	41	31	40.5
2001–3000	35.5	46	35	45	35	45	31.5	40.5	31	40	30.5	39.5
>3000	35	45.5	34.5	44.5	34.5	44.5	31	40	30.5	39.5	30	39

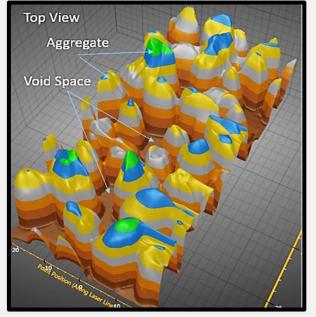
B = AC, Modified AC, Emulsion and Cutback, A-R = Asphalt Rubber lexas A&M Transportation Institute

Asphalt Rate

- What can we measure?
 - Size of the road length x width
 - Size of the rock to estimate the thickness of asphalt.
 - This gives us a length x width x height --- convert volume to gallons per sy
- What happens when we add rock?
 - Can rock and asphalt occupy the same space?
 - How much space on the road is for the asphalt and how much for the rock?



Asphalt sprayed on pavement before add rock



Asphalt Rate

Where:

- 5.61 = conversion factor
- R = Residual Binder at 60°F in gal. per sq. yd.
- V = Volume of Voids, percent (expressed as decimal) For usual spread rate, use V=0.55 (55%)
- De = Design Embedment, percent (expressed as decimal)
- Cr = Crumb Rubber content, percent (expressed as decimal)

Texas A&M Transportation Institute

Example 1

Binder	AC 20-5TR
Aggregate	GR 4
Application Temp °F	375
Traffic Data (Vehicles/Day/Lane)	3200
Trucks, %	28
Time of Year	Summer

Determine the Void Space							
¹ Volume of Voids	V	55%	%				
Determine the Design Embedment							
Current Traffic		3200	veh/day/	Measured			
		0200	lane				
Flakiness Index	FI	5%	%	Measured			
Aggregate Grade		4	Grade	Specified			
Design Embedment	De	34.5%	%	Table			
Determine Binder App	licatior	Rate base	d on Aggree	gate Size and Shape			
Crumb Rubber Content	Wa	0	%	A-R Mixture Design			
Average Mat Thickness	T _m	0.285	in	Measured			
Residual Binder at 60°F	R	0.30	gal/sy	5.61 x 0.55 x 0.345 x 0.285			

Texas A&M Transportation Institute

Example 1 – Application Temperature Adjustment

$$\mathbf{A} = \frac{\mathbf{R}}{\mathbf{Ft}}$$

Binder	App. Temp.	Vol. Correction Factor to
	[°F]	[60°F]
Cutbacks	150	0.96891
Emulsions	150	0.97750
Asphalt Cements and Asphalt- Rubber	375	0.89437

Where:

A = Binder application rate adjusted for application temperature, gal. per sq. yd.

F_t = Temperature correction factor from in Table 3, Table 4, and Table 5 or TxDOT's "Asphalt Binder Temperature-Volume Corrections."

Application Temperature Adjustment					
Application Temperature		375	°F	Contractor Provides	
Temperature Correction Factor	Ft	0.89437		Table	
Binder Rate at Application Temperature	A	0.34	gal/sy	=0.30/0.89437	

Asphalt Rate

Do we need to adjust for road condition?

Description	Example 1
Binder	AC 20-5TR
Aggregate	GR 4
Application Temp °F	375
Traffic Data (Vehicles/Day/Lane)	3200
Trucks, %	28
Time of Year	Summer
Based on Aggregate Size and Shape at 60°F	0.30 gal/sy
Adjusted for Application Temperature at 375 °F	0.34 gal/sy

Design Procedure - Adjustments

Adjust Application Rate

$$\mathbf{B} = \mathbf{A} + \mathbf{P} + \mathbf{T}_{\mathbf{V}} + \mathbf{T}\mathbf{H}$$

Where:

- B = Temperature Adjusted Binder Rate, gal. per sq. yd.
- P = Pavement adjustment factor, gal. per sq. yd., Refer to Table
- T_V = Traffic adjustment factor, gal. per sq. yd., Refer to Table
- T_H = Heavy Traffic adjustment factor, gal. per sq. yd., Refer to Table

Example Road Condition Adjustment Chart

(existing or new pavement-wheel path conditions)								
		Aggregate Grade						
Surface Type	Surface Condition	dition Gr 3						
		gal/sy	gal/sy	gal/sy				
Asphaltic Concrete	Very dry ACP with many cracks	0.08	0.06	0.05				
Pavement (ACP)	Dry ACP with some cracks	0.05	0.04	0.03				
r dvemeni (ACI)	Good condition ACP with few cracks	0.02	0.02	0.01				
	Very dry with many cracks		0.06	0.04				
	Very Coarse Texture and Dry with few cracks	0.04	0.04	0.03				
Seal	Dry seal with few cracks	0.03	0.03	0.02				
	Good seal with few cracks	0.00	0.00	0.00				
	Flushed seal	-0.02	-0.02	-0.01				
	Bleeding seal	-0.04	-0.04	-0.02				
	Dry or fresh patch	0.03	0.03	0.02				
Patches	Fogged patch	0.00	0.00	0.00				
	Flushed patch	-0.03	-0.03	-0.03				
	Flex Base	0.04	0.03	0.02				
Base	Stabilized Base	0.02	0.01	0				
	Asphalt Stabilized Base	0.01	0	-0.01				

Binder Rate Adjustment Factors for Pavement Surface Condition

Example 1

Binder Rate Adjustment Factors for Pavement Surface Condition (existing or new pavement-wheel path conditions)

al aller aller

							rade		
Surface Type Surface			nditior	٦	Gr 3	Gr 4	Gr 5		
Sonace Type	301140		manio	1	gal./sq. yd.	gal./sq. yd.	gal./sq. yd.		
A	Very dry ACP	' with	n many	' cracks	0.08	0.06	0.05		
Asphaltic Concrete	Dry ACP w	vith so	ome cr	acks	0.05	0.04	0.03		
Pavement		Good condition ACP with few			0.02	0.02	0.01		
	(crac	KS						
Binder Rate at Tempero	• •	А	0.34	gal/sy					
	Adjustme	ents I	based	on Field	l Conditior	Conditions			
Pavement Condit	ion Adj. Factor	Ρ	0.06	gal/sy		Visual			
Traffic Volume	lume Adj. Factor		-0.03	gal/sy		Measured			
Heavy Traffic /	vy Traffic Adj. Factor			gal/sy		Measured			
Binder Rate at Tempero		В	0.36	gal/sy	= 0.	= 0.34 + 0.0603 - 0			

Traffic Volume Adjustments						
ljustment Fc	ictors for Tr	affic				
Volume						
Aggre	egate Gra	de				
Gr 3	Gr 4	Gr 5				
gal/sy	gal/sy	gal/sy				
0.05	0.05	0.02				
0.05	0.05	0.02				
0.04	0.04	0.01				
0.03	0.03	0.00				
0.02	0.02	0.00				
0.01	0.01	0.00				
0.00	0.00	0.00				
-0.01	-0.01	-0.01				
-0.01	-0.01	-0.01				
-0.02	-0.02	-0.01				
-0.03	-0.03	-0.01				
	justment Fc Volume Aggra Gr 3 gal/sy 0.05 0.05 0.04 0.03 0.02 0.01 0.00 -0.01 -0.01 -0.02	justment Factors for Tr Volume Aggregate Grad Gr 3 Gr 4 gal/sy gal/sy 0.05 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02				

Heavy Truck Traffic Adjustments					
Binder Rate Adjustr	nent Fa	ctors for	r Truck		
Tre	affic				
Aggregate Grade					
% Trucks	Gr 3	Gr 4	Gr 5		
	gal/sy	gal/sy	gal/sy		
≤ 15%	0.00	0.00	0.00		
15.1%-30%	-0.01	-0.01	0.00		
>30%	-0.02	-0.02	0.00		

Example 1-Binder Application Rate

Description	Example 1
Binder	AC 20-5TR
Aggregate	GR 4
Application Temp °F	375
Traffic Data (Vehicles/Day/Lane)	3200
Trucks, %	28
Time of Year	Summer

Description	Example 1
Binder	AC 20-5TR
Aggregate	GR 4
Application Temp °F	375
Traffic Data (Vehicles/Day/Lane)	3200
Trucks, %	28
Time of Year	Summer
Based on Aggregate Size and Shape at 60°F	0.30 gal/sy
Adjusted for Application Temperature at 375 °F	0.34 gal/sy
Distributor	0.36 gal/sy

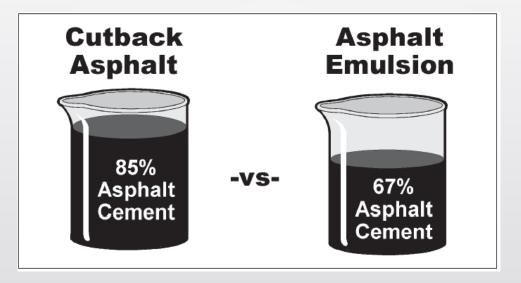
Example 2 - Emulsion

Description	Example 1	Example 2			
Binder	AC 20-5TR	CRS-2P			
Aggregate	GR 4				
Application Temp °F	375	150			
Traffic Data (Vehicles/Day/Lane)	3200				
Trucks, %	28				
Time of Year	Summer	Fall			
Residual Asphalt	100%	68%			

Example 2

Description	Example 1	Example 2
Binder	AC 20-5TR	CRS-2P
Aggregate	GR 4	
Application Temp °F	375	150
Traffic Data (Vehicles/Day/Lane)	3200	
Trucks, %	28	
Time of Year	Summer	Fall
Residual Asphalt	100%	68%

Application Temperature Adjustment					
Application Temperature		150	۴F	Contractor Provides	
Temperature Correction Factor		0.97750		Table	
Binder Rate at Application Temperature	А	0.31	gal/sy	$= 0.30 \div 0.97750$	
Adjustments based on Field Conditions					
Pavement Condition Adj. Factor	Р	0.06	gal/sy	Visual	
Traffic Volume Adj. Factor	T _V	-0.03	gal/sy	Measured	
Heavy Traffic Adj. Factor	Τ _Η	-0.01	gal/sy	Measured	
Binder Rate Adjusted	В	0.33	gal/sy	= 0.31 + 0.0603 - 0.01	


Binder Application Rate

Description	Example 1	Example 2
Binder	AC 20-5TR	CRS-2P
Aggregate	GR 4	
Application Temp °F	375	150
Traffic Data (Vehicles/Day/Lane)	3200	
Trucks, %	28	
Time of Year	Summer	Fall
Residual Asphalt	100%	68%
Based on Aggregate Size and Shape at 60°F	0.30 gal/sy	0.30 gal/sy
Adjusted for Application Temperature at 375 °F	0.34 gal/sy	0.31 gal/sy
Field Condition Adjusted Rate	0.36 gal/sy	0.33 gal/sy
Adjusted Rate for Distributor	0.36 gal/sy	?

Design Procedure – Cutbacks and Emulsions

Remember to Adjust Application Rates!

Design Procedure – Cutbacks and Emulsions

Time of Year and Residual Asphalt Adjustment

$$B_{ec} = B + K \times (\frac{B}{R_a} - B)$$

Binder Type	Minimum Residue from distillation Ra
Emulsion	65%
Cutback	70%

Where:

B_{ec} = recommended application rate of either emulsion or cutback, gal. per sq. yd.

K = seasonal adjustment factor from Table

R_a = percent residual asphalt in emulsion or cutback expressed as a decimal

Construction	Seasonal Adjustment Factor (K)				
Time	Emulsion Cutback				
Spring	0.60	0.70			
Summer	0.40	0.60			
Fall	0.70	0.80			
Winter	0.90	0.90			

Example 2

Description	Example 1	Example 2	Seasonal Adjustment Fo		stment Factor
Binder	AC 20-5TR	CRS-2P			
Aggregate	GR 4		Construction Time		,
Application Temp °F	375	150		Emulsion	Cutback
Traffic Data	3200				
(Vehicles/Day/Lane)	5200		Spring	0.60	0.70
Trucks, %	28		Summer	0.40	0.60
Time of Year	Summer	Fall	Fall	0.70	0.80
Residual Asphalt	100%	68%	Winter	0.90	0.90

Application Temperature and Field Condition Adjustments					
Binder Rate at Application Temperature	В	0.33	gal/sy		
Adjustments based on Binder Type and Time of Year					
Seasonal Adjustment Factor	K	0.7		Table	
Residual Asphalt	Ra	68%	Percent	Measured	
Binder Rate	B _{ec}	0.44	Gal/sy	$= 0.33 + 0.7 \times (\frac{0.33}{0.68} - 0.33)$	

Binder Application Rate

Description	Example 1	Example 2
Binder	AC 20-5TR	CRS-2P
Aggregate	GR 4	
Application Temp °F	375	150
Traffic Data (Vehicles/Day/Lane)	3200	
Trucks, %	28	
Time of Year	Summer	
Residual Asphalt	100%	68%
Based on Aggregate Size and Shape at 60°F	0.30 gal/sy	0.30 gal/sy
Adjusted for Application Temperature at 375	0.34 gal/sy	0.31 gal/sy
°F		
Field Condition Adjusted Rate	0.36 gal/sy	0.33 gal/sy
Distributor	0.36 gal/sy	0.44 gal/sy

Questions?

Texas A&M Transportation Institute 1111 RELLIS Parkway Bryan, TX 77807 info@tti.tamu.edu 979-317-2000

Follow us on social media

41